Product Description

LMZ-I Split Brake Wheel Type Plum Elastic Coupling(GB/T 5272-2002)

♦Description

Plum elastic coupling has the characteristics of vibration reduction, buffering, small radial size, no lubrication, and easy maintenance. Suitable for starting frequency, positive and negative rotation, medium and low speed, medium and small power transmission.Not suitable for heavy loads and frequent replacement of elastic elements.
The structure of plum elastic coupling is simple. But when the elastic element is replaced, the half coupling shall be moved axially.LMS type easily replaces the elastic element without having to move the half coupling.

Basic Parameter and Main Dimension

NOTE:
N.m= Norminal Torque; HA= Hardness of elastic parts; rpm= Allowable speed of rotation;
d1.d2.dz= Diameter of shaft hole; Y L= Length of shaft hole;
Model of elastic parts; kg= Mass; kg.m²= Rotational inertia

1. Mass and rotary inertia are the approximation calculated according to the recommended minimum axial hole.
2. Diameter of shaft hole with* can be used for Z-type shaft hole.
3. a.b is the code for 2 different materials and the hardness of elastic parts.
 
4. The pre-tightening torque of the connection bolt between LMZ-I brake wheel and half coupling shall not be less than the following table:
Note: Specifications of bolt; pre-tightening torque

Allowable Amount of Compensation of Jaw CouplingNote: Model; Maximum allowable error of installation (γ= radial; α= angular); 
Maximum allowable amount of operating compensation(γ= radial; α= angular); Axial clearance(χ)
The maximum amount of operating compensation refers to the relative offset of 2 axes which is allowed in the working state due to manufacturing error, installation error, vibration, impact, deformation, temperature change and other comprehensive factors caused by the change of working load.

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS,WSD,WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JMIJ,JMII,JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

♦Our Company

HangZhou CHINAMFG Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.
Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

 

♦Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
Raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→ Packing→ Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5. Quality Control
Every step should be a special test by Professional Staff according to the standard of ISO9001 and TS16949.

♦FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of couplings.

Q 2: Can you do OEM?
Yes, we can. We can do OEM & ODM for all the customers with customized artworks in PDF or AI format.

Q 3: How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have a very good price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1 pcs.

Q 7: Do you have inspection procedures for coupling?
A: 100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A: T/T.  
 

♦Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China

mechanical coupling

Comparing mechanical couplings with other types of couplings in performance.

Mechanical couplings are an essential component in power transmission systems, and they are often compared with other types of couplings based on their performance characteristics. Let’s explore how mechanical couplings compare with some other common coupling types:

1. Mechanical Couplings vs. Fluid Couplings:

Fluid couplings use hydraulic fluid to transmit torque between the input and output shafts. They offer smooth torque transmission and can act as a torque limiter, protecting the connected equipment from overloads. However, they have some energy losses due to fluid turbulence, which slightly reduces their efficiency compared to mechanical couplings. Mechanical couplings, on the other hand, provide direct and efficient torque transmission without any energy losses due to fluid friction.

2. Mechanical Couplings vs. Magnetic Couplings:

Magnetic couplings use magnetic fields to transfer torque from one shaft to another. They are commonly used in applications where a hermetic seal is required, such as in pumps and mixers. Magnetic couplings have the advantage of being completely leak-proof, unlike mechanical couplings that may require seals in certain applications. However, magnetic couplings have a lower torque capacity compared to many mechanical couplings, and their efficiency can be affected by variations in magnetic field strength and alignment.

3. Mechanical Couplings vs. Hydraulic Couplings:

Hydraulic couplings use hydraulic fluid to transmit torque. They offer high torque capacity and the ability to slip during overloads, acting as a safety feature. However, hydraulic couplings can have energy losses due to fluid friction, making them slightly less efficient than mechanical couplings. Mechanical couplings do not have energy losses related to fluid friction and provide direct torque transmission, making them more efficient in this regard.

4. Mechanical Couplings vs. Electrical Couplings:

Electrical couplings use electromagnetic fields to transfer torque. They are commonly used in high-precision and high-speed applications, such as robotics and aerospace systems. Electrical couplings can have high torque capacity and precise control over torque transmission. However, they require electrical power to function, which may not be suitable for all applications. Mechanical couplings are self-contained and do not require additional power sources, making them more suitable for various types of machinery and equipment.

5. Mechanical Couplings vs. Friction Couplings:

Friction couplings use friction between contacting surfaces to transmit torque. They are simple in design and can slip during overloads, providing protection against excessive loads. However, friction couplings can experience wear and require periodic maintenance. Mechanical couplings, depending on their type, may have a more robust design and may not experience as much wear under normal operating conditions.

In summary, mechanical couplings offer direct and efficient torque transmission without energy losses related to fluid friction or magnetic fields. While other coupling types may have specific advantages in certain applications, mechanical couplings remain a versatile and widely used choice in various industries due to their reliability, simplicity, and ease of maintenance.

“`mechanical coupling

Can mechanical couplings handle reversing loads and shock loads effectively?

Yes, mechanical couplings are designed to handle reversing loads and shock loads effectively in various applications. Their ability to accommodate these dynamic loads is dependent on their design and material properties.

Reversing Loads:

Mechanical couplings can handle reversing loads, which are loads that change direction periodically. When the direction of the applied torque changes, the coupling must be able to smoothly transition from one direction to the other without any slippage or backlash. Many types of mechanical couplings, such as gear couplings and disc couplings, are well-suited for reversing loads due to their rigid and positive engagement designs. They can maintain a strong connection between shafts and provide reliable torque transmission even during frequent load reversals.

Shock Loads:

Shock loads are sudden, high-intensity loads that occur due to impacts, starts, or stops. Mechanical couplings are engineered to withstand shock loads and prevent damage to the connected equipment. Flexible couplings, like elastomeric couplings, are particularly effective at dampening shock loads. The elastomeric material absorbs and dissipates the energy generated by the impact, reducing the transmitted shock to the system. Some metal couplings, such as beam couplings and bellows couplings, also have good shock absorption capabilities due to their design and material properties.

It’s important to consider the specific application requirements when selecting a coupling for systems with reversing loads or shock loads. Different coupling types have varying capabilities in handling these dynamic loads. Properly choosing a coupling that matches the load conditions ensures the longevity and reliability of the mechanical system, preventing premature wear and failures.

“`mechanical coupling

How does a mechanical coupling facilitate the connection between two shafts?

A mechanical coupling plays a critical role in connecting two shafts in a mechanical system and enabling the transmission of torque and motion between them. The process of how a mechanical coupling facilitates this connection can be explained as follows:

1. Physical Linkage:

A mechanical coupling physically links the two shafts together. It consists of two mating components that fit over the respective shaft ends, ensuring a secure connection.

2. Torque Transmission:

When the motor or driving shaft rotates, it generates torque. This torque is transmitted through the mechanical coupling to the driven shaft, causing it to rotate as well.

3. Keyways or Spline Connection:

Many mechanical couplings use keyways or splines to enhance the connection between the shafts. Keyways are slots cut into the shaft and coupling, and a key is inserted to prevent relative motion between the two components.

4. Compression or Expansion Fit:

In some couplings, the connection between the shafts is achieved through a compression or expansion fit. The coupling is designed to be slightly smaller or larger than the shaft diameter, creating a tight fit when assembled.

5. Set Screws or Bolts:

Set screws or bolts are often used in mechanical couplings to secure the coupling tightly to the shafts. These screws apply pressure to prevent any relative movement between the coupling and the shafts during operation.

6. Flexible Elements:

Flexible couplings feature elements made of materials like rubber or elastomers that can bend or flex. These elements accommodate misalignment between the shafts while maintaining the connection and transmitting torque.

7. Key Features:

Certain types of couplings, such as gear couplings or disc couplings, utilize teeth or gear features to achieve a strong and precise connection between the shafts. These key features ensure a positive engagement, enhancing torque transmission.

In summary, a mechanical coupling serves as the link between two rotating shafts, enabling them to function together as a single unit. Whether through a tight compression fit, keyways, or flexible elements, the coupling ensures a secure and efficient connection, allowing torque to be transmitted from one shaft to the other, and enabling the mechanical system to perform its intended function reliably.

“`
China high quality CHINAMFG Lmz-I Type Split Brake Wheel Coupling Machinery Mechanical Industrial Connection  China high quality CHINAMFG Lmz-I Type Split Brake Wheel Coupling Machinery Mechanical Industrial Connection
editor by CX 2023-11-27